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Introduction

Problems:
1. A key consideration in few-shot fine-grained image

classification is to learn feature representations with
higher inter-class and lower intra-class variations,
with a mere few labelled samples.

2. Prior works predominately use a support set to
reconstruct the query image and then utilize metric
learning to determine its category. Such unidirec-
tional reconstruction methods only help to increase
inter-class variations and are not effective in tackling
intra-class variations.

Motivation:
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Fig. 1: Motivation of the proposed Bi-directional Feature Reconstruc-
tion Network (Bi-FRN). (a) is the traditional metric based method. (b)
is the method proposed in FRN [1]. (b) + (c) is the method proposed in
this paper. (b) can help the model increase the inter-class variations,
and (c) can help the model decrease the intra-class variations.

In this paper, we for the first time introduce a bi-
directional reconstruction mechanism for few-shot fine-
grained classification. Instead of using the support set
to reconstruct the query set to increase inter-class vari-
ations only (as shown in Fig.1 (b)), we additionally use
the query set to reconstruct the support set to simulta-
neously reduce intra-class variations (as shown in Fig.
1 (c)). This modification might sound overly simple at
first sight, it however importantly fulfills both desired
learning outcomes for the fine-grained setting – support
to query to encourage large inter-class variations, and
query to support to encourage small intra-class varia-
tions.
Ref: [1] Wertheimer, D.; Tang, L.; and Hariharan, B. 2021. Few-shot
Classification With Feature Map Reconstruction Networks. In CVPR.

The Proposed Method
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Fig. 2: The proposed Bi-Directional feature reconstruction network.
FSRM refers to Feature Self-reconstruction Module and FMRM refers
to Feature Mutual Reconstruction Module.

As shown in Fig.2, our model consists of four modules:
1. Embedding module fθ for extracting deep convolu-

tional image features.
2. Feature self-reconstruction module gφ, in which

the convolutional features of each image are recon-
structed by themselves based on a self-attention
mechanism.. This module can make the similar local
features become more similar, while dissimilar ones
even more dissimilar.

3. Feature mutual reconstruction module hγ, which
reconstructs sample features in a bidirectional form.
This module not only uses the support sample to re-
construct the query sample but also reconstructs the
support sample from the query sample.

4. Euclidean metric module, which is in charge of cal-
culating the distance between origin sample and re-
constructed sample.

Contributions

1. We reveal the key problem in current reconstruction-
based few-shot fine-grained classification lies with its
inability in minimising intra-class variations.

2. We for the first time propose a bi-directional recon-
struction network that simultaneously increase inter-
class variations while reducing intra-class variations.

3. Experimental results and ablative analyses on three
fine-grained few-shot image datasets consistently
demonstrate the superiority of the proposed method
and reveal insights on why the bi-directional ap-
proach is effective.

Experimental Results

Fig. 3: 5-way few-shot classification performance on the CUB, Dogs
and Cars datasets. The top block uses Conv-4 backbone and the
bottom block uses ResNet-12 backbone.

Ablation on Reconstruction Designs of FMRM.

Fig. 4: Ablation on reconstruction designs of FMRM.

Feature Visualization
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Fig. 5: Recovered images of different features by our method for the
CUB dataset.

Open Sources

I Code: https://github.com/PRIS-CV/Bi-FRN
I Email: {jijie,lixiaoxu}@lut.edu.cn


